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Low-resolution face recognition is challenging Due due to the uncertain input resolutions and the missing a lack of distinguishing details in low-resolution (LR) facial images. , low-resolution face recognition is challenging and lRearning resolution- invariant representations is must be learned for optimalcrucial for performance. Existing methods for this task mainly minimize the distance between the representations of the low-resolution (LR) and corresponding high-resolution (HR) image pairs in a common subspace. However, previous these works only focus on introducing various distance metrics at the final layer and between HR-LR image pairs. They did do not fully utilize the intermediate layers orand multi-resolution supervision, thus yielding only modest performance. In this paper, we propose a novel Twotwo-stage Multimulti-scale Resolutionresolution-adaptive network to learn more robust resolution- invariant representations. In the first stage, the structural patterns and the semantic patterns are distilled to provide sufficient supervision. Furthermore, toA curriculum learning strategy facilitates the training of LR and HR image matching, we introduce the curriculum learning strategy, whichsmoothly decreasinges the resolution of LR images smoothly. In the second stage, a Multimulti-Resolution resolution Contrastive contrastive loss is introduced on LR images to enforce the intra-class clustering and inter-class separation of the LR representations. By introducing multi-scale supervision and multi-resolution LR representations clustering, our network can produce robust representations with despite uncertain input sizes. Experimental results on eight benchmark data sets demonstrate the effectiveness of the proposed method.
[bookmark: introduction]Introduction
Recent years have seen rapid developments in automatic face recognition. With tThe increase of in sample numbers and the improvement of the loss function has enhanced, the performance of high-resolution face recognition on several benchmark data sets, such as LFW (Huang et al. 2008), AgeDB-30 (Moschoglou et al. 2017), CFP-FP (Sengupta et al. 2016), IJB-B (Whitelam et al. 2017), and IJB-C (Maze et al. 2018), ). has been greatly enhanced. However, surveillance face recognition is still a complicated challenge because of the variations of in imaging conditions, such asparticularly low resolution. Low-resolution face recognition has two application scenarios, : HR-LR and LR-LR. The HR-LR task conducts the representation matching between the HR galleries and LR probes. In the LR-LR task, both galleries and probes are from LR images.
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(a) previous Previous methods mainly makeforce the representations of LR images to approximate to that those of HR images. (b) our Our proposed method conducts the approximation in stage one and adds the representation clustering of multiple LR images in stage two.
Due to the missing detailed facial texture and component in LR images, directly Directly applying the HR face recognition methods to LR face recognition resultsimages results in poor performance due to the lack of facial texture and components. The reason is that tFhe general face recognition methods suitable for HR images cannot extract discriminative representations from LR images. A natural idea is to recover HR images from LR images through the face super-resolution (SR) method (Jiao et al. 2021). The SR methods have high computational complexity and large parameter scales of parameters, thus so they are not suitable for real-time deployment. Furthermore, the SR images contain stretching artifacts, which  and such noise may becan propagated to face recognition later. The oOther methods (Lu, Jiang, and Kot 2018; Zha and Chao 2019; Yin et al. 2020; Massoli, Amato, and Falchi 2020; Khalid et al. 2020; Fang et al. 2020) map HR images and LR images into a common representation space and minimizes the distance between them, as shown in Figure [fig1](a). However, these methods focus on introducing various distance metrics and only minimize the distance only between the representations at the final layer for semantic patterns. The iIntermediate features, which always contain the structural patterns and also play a key role in performance, are left unleveragconstrained. When generating HR and LR images pairs, the resolution of the LR image is randomly chosen randomly. There are gaps between the domains of LR images with different resolutions, and such this random strategy results in slow convergence. Moreover, previous methods primarily minimize the distance mainly between LR and HR image pairs and ignorewhile ignoring the category correlation of multiple LR images, . while rReal-world inputs are usually LR images with uncertain resolution.	Comment by Diane Pulvino: I’d delete this sentence
In this paper, to fully utilize the cross-resolution supervision of all scales, we propose a tTwo-stage Multimulti-scale Resolutionresolution-adaptive (TMR) network to fully utilize the cross-resolution supervision of all scales. Specifically, the proposed method includes a multi-scale distillation stage and a multi-resolution clustering stage. In the first stage, a pre-trained HR network is utilized to predict HR features and representations. Besides the final representations, tThe distances between the intermediate features of LR and HR images are also minimized. We calculate the multi-scale affinity matrix and maximize the mutual information to distill the structural and semantic patterns. Meanwhile, a simple-to-complex curriculum learning strategy is designed to facilitates the training of LR and HR image matching. This strategy regards the resolution of samples as the difficulty score and decreases the resolution of LR images smoothly,, which so convergence occurs more quickly than if resolutions were chosen randomly.brings faster convergence than randomly choosing LR images. In the second stage, wWhile LR representations closely correspond to HR representations at this point, they are not internally clustered by category. already being close to the corresponding HR ones on multi scales, the LR representations are not well clustered by category internally. In light of this, we propose a novel Multimulti-Resolution resolution Contrastive contrastive (MRC) loss. The goal of MCLMRC loss is to modulate multi-resolution LR representations so those within the same class to become more aggregated and those in different classes are further farther apart. Consequently, our network predicts resolution-adaptive representations with images of different input sizes. Our method Taking takes the multi-scale feature distillation and multi-resolution representation clustering stages together to, our method provides a new solution to generate less biased and more robust resolution-invariant representations for LR facial recognition.	Comment by Diane Pulvino: Loss function?	Comment by Diane Pulvino: MRC?	Comment by Diane Pulvino: I changed this to MRC – make sure that’s correct.
We conduct LR facial recognition experiments on three realistic LR face data sets, i.e., SCFace, QMUL-SurvFace, and QMUL-TinyFace. We also conduct experiments on down-sampled synthetic LR test sets on five HR face data sets, i.e., LFW, CFP, AgbDB-30, IJB-B, and IJB-C. Experimental results on these benchmark data sets demonstrate the effectiveness of the proposed method. The ablation study also verifies the usefulness of each proposed part. Code will be publicly released after paper acceptance.
Contributions of this work are summarized as follows:
· We propose to minimize the distances between the multi-scale intermediate features besides as well as the final representations of HR and LR images.
· We introduceA  Multimulti-Resolution resolution Contrastive contrastive (MRC) loss on multi-resolution LR images, which eenforcesing the intra-class clustering and inter-class separation of the LR representations, is introduced. Combining two stages,These two stages form the basis of a we propose a Ttwo-stage Multimulti-scale Resolutionresolution-adaptive (TMR) network able to learn robust resolution-invariant representation.	Comment by Diane Pulvino: Loss function?
· We conduct experiments on eight widely used benchmark data sets, . and the rResults demonstrate the superiority of our method compared to state-of-the-art works.
[image: 1.jpg]
Illustration of our proposed network, which consists of an HR network $F_h$, an LR network $F_l$, and a momentum network $F_m$. In stage one (top), the features $f^i_h$ and $f^i_l$ are extracted to align the structural patterns by affinity matrix. The representations $r_h$ and $r_l$ are learned to distill the semantic patterns by mutual informationMI maximization (MIM). Pixel value errors are calculated to minimize the distances for both features and representations. In stage two (bottom), the representations $r_l$ and $r_m$  are$ are contrasted for the multi-resolution contrastive loss. In the circle on the right, green is from $F_l$ and red is from $F_m$. Different shapes are represent different classes. Different resolutions of the same sample have Same the same color, same and shape but different sizes are different resolutions of the same sample.	Comment by Diane Pulvino: Label this (e.g., Fig. 1)
[bookmark: related-work]Related Work
Low- Resolution Face Recognition. There are two mainstream methods For for low-resolution face recognition., there are two mainstream methods. One method is to applyies super-resolution (SR) technology to reconstruct HR images from LR images for HR face recognition. Jiao et al. (Jiao et al. 2021) proposed a Dualdual-Domain domain Adaptive adaptive Translation translation (DDAT) structure to generate HR images for both synthetic LR and realistic LR images. DDAT minimizes the domain gap between the synthetic and realistic data sets. The SR methods need muchare computationally complex, and thus so are not unsuitable for real-time deployment. Meanwhile, tThe synthetic SR images also contain noise, which will cause recognition errors.
The other methods is to learn similar representations by minimizing the distance between HR and LR representations from the final layer in a common space. Among recent state-of-the-art LRFR works of this type, Lu et al. (Lu, Jiang, and Kot 2018) proposed a Deep deep Coupled coupled Resnet ResNet (DCR) model with center loss to extract robust facial resolution-robust representations. Zha et al. (Zha and Chao 2019) proposed a Transferable transferable Coupled coupled Network network (TCN) with triplet loss also to learn similar facial representations between HR and LR images. Massoli et al. (Massoli, Amato, and Falchi 2020) introduced the Teacherteacher-Curriculum curriculum (T-C) to approximate the representations of the LR images to those of the HR images. In FAN (Yin et al. 2020), a Feature feature Adaptation adaptation Network network(FAN) was proposed to disentangle the representations from HR images and also minimize the representation distances between the HR and LR networks. Khalid et al. (Khalid et al. 2020) changed the manner of distance metric by minimizing the KL-divergence between the softmax probabilities of the HR and LR images. Fang et al. (Fang et al. 2020) focused on generating the LR faces by using a generative adversarial network instead ofrather than down-sampling, and then forcing similarity between pulling the representations of the HR and generated LR images close.
Besides these two methods, Huang et al. (Huang et al. 2020) proposed a Distribution distribution Distillation distillation Loss loss (DDL) to narrow the common face recognition performance gap between the easy and hard samples, . which It was also evaluated on LR face recognition test sets. In MIND (Low, Teoh, and Park 2021), a Mutual mutual Information information Distillation distillation Network network (MIND-Net) was proposed to distill the representations between synthetic multi-resolution images and realistic LR images by triplet loss. However, it is difficult to select image pairs according to categories due to the domain gap caused by the absence of the same person, its loss is difficult to select image pairs according to categories. This method results in poor performance bothperforms poorly on both synthetic and realistic test sets.	Comment by Diane Pulvino: Do you mean different subjects? I might say that rather than the absence of the same subject.
Existing methods (Lu, Jiang, and Kot 2018; Zha and Chao 2019; Massoli, Amato, and Falchi 2020; Yin et al. 2020; Khalid et al. 2020; Fang et al. 2020) mainly primarily minimize the distances between the representations at the final layer and between HR-LR image pairs. They ignore the constraint of the intermediate feature constraintss and the category correlation of multiple LR representations. Unlike themthese methods, the first stage of our network distills semantic patterns and structural patterns from the final representations and middle features for the HR-LR task. Furthermore, the second stage considers the contrasting relationship of multi-resolution representations from different classes to modulate the representation clustering for the LR-LR task, as shown in Figure [fig1](b).
Contrastive Learning. Contrastive learning performs well and is frequently used for has been widely applied for representation learning and has obtained high performance. Chen et al. (Chen et al. 2020) proposed SimCLR, a simple framework for contrastive learning called SimCLR, whichthat introduced contrastive learning into representation learning. He et al. (He et al. 2020) proposed a Momentum momentum Contrast contrast (MoCo) mechanism to build significant and consistent dictionaries for unsupervised learning. The pPrevious mainstream contrastive loss methods mainly typically considers the contrast from two -views. However, we aim need to learn the representations of multi-resolution imagesimages with varying resolutions in this work. Inspired by MOCOMoCo, We we propose a novel Multimulti-Resolution resolution Contrastive contrastive (MRC) loss for robust clustering of multiple LR representations. Our MRC loss extends two -views  to multiple -views.	Comment by Diane Pulvino: Loss function? Loss method? Loss technique?
[bookmark: proposed-method]Proposed Method
In this section, we firstThis section presents the problem statement and our the facial representation learning network. Then, we introduce the first stage of multi-scale distillation and the second stage of multi-resolution clustering are introduced. The overall network is illustrated in Figure [fig2].
[bookmark: problem-statement]Problem Statement
During training, we have aThe training set consists ofwith $N$ original HR images. We down-sampled tThe HR images are down-sampled to synthesize four LR images. The training set $\mathcal{D}_{s}$ are is composed of the original HR and synthetic LR images $\big\{ I_h, I^{1}_{sl}, I^{2}_{sl}, I^{3}_{sl}, I^{4}_{sl},y \big\}$ , where $ I_h \in \mathbb{R}^{H\times W \times 3}$  represents the original HR image, $I^{i}_{sl}  \in\mathbb{R}^{H^i\times W^i\times 3}$ represents the $i$-th synthetic LR image, and $y \in \left\{ 1,2,...,Y \right\}$  represents the $y$-th class. And we haveThere is another training set $\mathcal{D}_{r}$ with $M$ realistic LR images $\left\{ I_{rl},y_{rl} \right\} $,  where $I_{rl}$ represents the realistic LR image with uncertain resolution. During testing, the images of uncertain resolution are inputted to output their representations for facial face recognition.
[bookmark: facial-representation-learning-network]Facial Representation Learning Network	Comment by Diane Pulvino: Are you saying ‘Facial representation’ and ‘facial recognition’ or ‘face representation’ and ‘face recognition’? Both seem to be used commonly in the literature, so it’s your choice – just be consistent. 
As illustrated in the top of Figure \ref{fig2}, the facial representation learning network mainly consists of two neural networks with the, which have the same structure. Each network is divided into an input layer, $B$ stacked blocks, and an output layer. The first one $ F_{h} $ is the HR network, into which we input the HR image is input to obtain multi-scale HR features $\big\{ f_h^i  \big\}_{i=1}^B$ and the output HR representation $r_h = F_h(I_h)$, where $ f_h^i$ denotes the features at the $i$-th block. The second one network $ F_{l} $ is the LR network, where we iwhich uses nput the LR image $I_{l} \in \left\{ I_{sl},I_{rl}\right\} $ as the input to obtain multi-scale LR features $\big\{ f_l^i  \big\}^B_{i=1}$ and the output LR representation $r_l = F_l(I_l)$. Before outputting, the representations $r_h$ and $r_l$ are both modified by $L2$ normalization.
The HR network $ F_{h} $ is pre-trained on an HR images data set to learn discriminative representations. We adapt tThe additive angular margin loss $\mathcal{L}_{Arc}$ is adapted from ArcFace \cite{deng2019arcface}, which and can be presented as:
[image: ]
where in which $r$ denotes the representation belonging to the $y$-th class. $W$ is the last fully connected layer and $W_j$ is the $j$-th column of the $W$. $\theta_{j}$ is the angle between the weight $W_j$ and the representation $r$. $C$ and $m$ are the class number and the additive angular margin penalty, respectively.
After pre-training, the parameters of the HR network $ F_{h} $ are fixed. The LR network $ F_{l} $ is initialized with the pre-trained parameters from $ F_{h} $. This allows the LR network to extract representations from HR images as well. Then, tThe LR network is then trained in two stages, a multi-scale distillation stage and a multi-resolution clustering stage.
[bookmark: multi-scale-distillation-stage]Multi-Scale Distillation Stage
We propose a multi-scale distillation stage To to fully utilize the multi-scale supervision from the HR network, We propose a multi-scale distillation stage. Unlike existing methods, this stage aligns In this stage, different from existing methods, the features at multiple scales as well as besides the representations of HR and LR images are aligned. We This alignment is implemented this alignment through three types of distillations, i.e.,: pixel-wise value error (PVE), affinity matrix distillation (AMD), and mutual information maximization (MIM). There are various distance metrics between the HR and LR representations, ; and we choose use PVE which to minimizes the pixel-wise distance between the final representations. Apart from that, oOur method also applies PVE to the intermediate features, as well and further applies AMD to the paired HR and LR features of intermediate layers to align their structural patterns. Moreover, in addition to PVE, we introduce another alignment measurement called Mutual Information information maximization (MIM), which increases the approximation of the representation distribution by reducing the distance between the joint and marginal distributions of the HR and LR representations. Finally, we provide tThe training sequence is provided under the curriculum learning strategy (CLS). During this stage, the LR network will beis trained with the HR images and synthetic LR images from $\mathcal{D}_{s}$.
Pixel-Wise Value Error. To distill the local information in pixel-wise values from HR images to LR images, we minimize the euclidean Euclidean distance $\mathcal{L}_{Pix}$ between paired multi-scale features $\big\{ f_h^i ,f_l^i  \big\}^B_{i=1}$ and representations $\left\{ r_h,r_l \right\} as follows:.
[image: ]
Affinity Matrix Distillation. A natural idea is that, aAs the resolution decreases,, though the textures and components of the face (eyes, eyebrows, mouth, etc.) become more blurredblurrier. However,, the shape and contour information remains unchanged and the structures of LR images are consistent with those of HR images. We were Motivated motivated by \cite{wang2018non}, who posit that non-local operations, like the affinity matrix, can enlarge the receptive field and calculate the relationship between pixels, thus it reflectings the global correlation of features pixel -to -pixel and the resolution-invariant structural pattern. Specifically, given a feature $f \in\mathbb{R}^{h\times w\times c}$, reshape operation $R(\cdot)$ pulls it into a two-dimensional vector $R(f) \in\mathbb{R}^{hw\times c}$. Then, the affinity matrix $A(f)$ is defined as:
[image: ]
where $\sigma(\cdot)$ is a softmax function, $\otimes$ is the matrix multiplication, and $T$ is the matrix transpose operation. To align the structural pattern of the HR and LR features, we minimize the Manhattan distance $\mathcal{L}_{AMD}$ between their affinity matrices: 
[image: ]
Mutual Information Maximization. Mutual Information information (MI) is an elementary measurement to quantify the dependence of two random variables. Formally, The MI between random  variables $\boldsymbol{X}$ and $\boldsymbol{Y}$ is defined as:
[image: ]
where $p(x,y)$ is the joint probability distribution, and $p(x)p(y)$ are their marginal distributions.
Maximizing mutual information between different views strengthens the dependence and reduces the discrepancy of multi-view variable distribution to learn view-robust representations. In this work, we maximize the cross-resolution MI to facilitate the semantic pattern consistency of the HR and LR representations. Since it is challenging to calculate MI directly, most works usually estimate the lower bound of mutual information. Inspired by DIM \cite{hjelm2018learning}, we use a Jensen-Shannon MI estimator, which keeps maintains a good balance between computational complexity and performance. Within a mini-batch, given HR representation $r_h$, its homogeneity positive match $r^+_l$, and its heterogeneity negative match  $r^-_l$,  the positive pair $\big\{ r_h,r^+_l \big\}$ represents a sampled from the joint distribution $p(r_h,r_l)$ and the negative pair $\big\{r_h,r^-_l\big\}$ represents a sampled from the marginal distribution $p(r_h)(r_l)$. MI estimation transfers semantic patterns By by considering the category relationship to represent these two distributions, MI estimation can transfer the semantic patterns. Maximizing the lower bound of mutual information is equivalent to minimizing the loss of $\mathcal{L}_{MIM}$:	Comment by Diane Pulvino: I changed ‘sampled’ to ‘a sample’ – this may not be correct but ‘sampled’ doesn’t make sense here. 
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where $\rho(z)=log(1+e^z)$ is the softplus function.
Loss Function of Stage One. For paired HR and LR images $\big\{ I_h,I^i_{sl} \big\}$ , the final loss in the multi-scale distillation stage is:
[image: ]
where $\varphi_{1}$, $\varphi_{2}$, and $\varphi_{1}$ are three hyper-parameters for weighing different losses.
Curriculum Learning Strategy. Current methods randomly choose the resolution of the LR image When when generating the HR and LR images pairs, the resolution of the LR image is randomly chosen in existing methods. However, face images with lower resolution have fewer details and thus have larger domain shifts from the HR images. The mMore significant shifts in lower resolution images will interfere with the representation distribution learning of the higher resolution images. The domain shifts vary when LR image resolution is randomly chosen, slowing down the convergence during training.When randomly choosing LR images, the domain shifts of the LR images vary all the time, which slows the convergence of training. Instead of choosing LR images with a random resolution, a simple-to-complex curriculum learning strategy (CLS) is designed to facilitate the training of HR and LR image matching. This strategy regards the resolution of samples as the difficulty score and decreases the resolution of LR images smoothly, which brings faster convergence than randomly choosingso convergence occurs more quickly.
[bookmark: multi-resolution-clustering-stage]For the starting epochs, the highest resolution LR images are paired with HR ones are only those of the highest resolution. Step by step, the LR images with lower resolutions are added to the choices. Specifically, in the $i$-th step, our networks are trained with HR images $I_h$ and the LR images in $\big\{I^{1}_{sl}, ..., I^{i}_{sl}\big\}$ for $e^i$ epochs, where $\big\{I^{i}_{sl} \big\}$ is the LR images with $i$-th low  resolution. Therefore, the loss function in stage one becomes $\sum_{j=1}^i \mathcal{L}_{Stage1}(I_h,I^j_{sl})$. Benefit from this simple-to-complex resolution adaptation strategy, the The higher LR resolution samples help reduce large domain shifts by gradually making the lowest resolution representations close to HR representations step by step.
Multi-Resolution Clustering Stage
After stage one, with the HR representations as the centers, the representations of multiple LR images from the same sample are clustered around the HR representations. However, the domain discrepancy among different LR representations still remains. To tackle this obstacle, we propose a multi-resolution representation clustering stage. During this stage, the LR network is first trained with synthetic LR images from data set $\mathcal{D}_{s}$, first and then fine-tuned on realistic LR data set $\mathcal{D}_{r}$.

Training with Train on Synthetic Low-Resolution Imagess. Recently, contrastive learning has achieved excellent performance in many self-supervised and unsupervised works by, through learning representations with high intra-class compactness and inter-class discrepancy. Our stage oneThe first stage of our method distills the facial information from HR to LR images while neglecting the category correlations among multiple LR images. In light of this, we propose a contrastive learning framework with a Multimulti-Resolution resolution Contrastive contrastive (MRC) loss. Different from Unlike the original contrastive loss, our MRC loss extends the regular two -views into multiplei -views. The intra-class compactness is maximized to cluster the representations of multiple LR samples from the same person and the same class. Meanwhile, the iInter-class discrepancy is maximized to push the representations of heterogeneous samples further farther away from the decision boundary.	Comment by Diane Pulvino: Make sure your headings are set up properly.

Specifically, we replicate the LR network is replicated asas the momentum network $F_m$. For the training set $\mathcal{D}_{s}$, a key memory bank $K$ for LR representations of four resolutions and a category memory bank $C$ for the corresponding labels are maintained,
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where $L$ is the length of the memory bank. Both memory banks are dynamic queues, initialized with four LR representations and labels of the LR images sampled randomly from the data set $\mathcal{D}_{s}$.

For aA set of LR samples $\big\{ I^1_{sl}, I^2_{sl}, I^3_{sl}, I^4_{sl}, y \big\}$ is, we input them into the LR network and momentum network respectively to obtain the representations $\big\{ r^1_{l}, r^2_{l},r^3_{l}, r^4_{l} \big\}$ and $\big\{ r^1_{m},  r^2_{m}, r^3_{m}, r^4_{m} \big\}$. Assuming $r^i_{l}$ is an anchor, its positive pairs are the representations $\big\{ r^j_{m} | j \neq i  \big\}$ of the same sample at different resolutions and the representations $K^+=\big\{ k^j_n | c_n= y,j=1,2,3,4  \big\}$ of the same class at four resolutions from memory bank $K$. Its negative pairs are representations $K^-=\big\{ k^j_n | c_n\neq y,j=1,2,3,4  \big\}$ of the different classed classes at four resolutions, also from memory bank $K$. The $\mathcal{L}_{MRC}$ loss is designed defined as:
[image: ]
[image: ]
where $i$ and $j$ are the resolution superscripts of the anchor and contrastive samples, respectively. $R_l$ denotes the LR representation set, which contains four LR representations. $\tau >0$ is a temperature parameter. 
After a mini-batch participated inis factored into the calculation, the generated representations of four resolutions $\left\{ r^1_{m}, r^2_{m}, r^3_{m}, r^4_{m} \right\}$ and their labels by each sample wereare enqueued to the key memory bank $K$ and category memory bank $C$. The momentum updates through the LR network as follows::	Comment by Diane Pulvino: Input into? 
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where $\theta_m$ and $\theta_l$ are the parameters of $F_m$ and $F_l$ respectively. $\lambda \in \left[0,1 \right) $ is a momentum coefficient.
Fine-tune Tuning on Realistic Low-Resolution Images. For realistic LR sample $\left\{ I_{rl},y_{rl} \right\} \in \mathcal{D}_{r}$, our key memory bank $K=\left[k_{n} \right]^L_{n=1}$ and category memory bank $C=\left[c_{n}\right]^L_{n=1}$ also maintain the representations and labels. Since we don't know the true resolution of these samples is unknown, we treat different images of the same person are treated as multi-resolution. Given an anchor $r_l$, its positive pairs ${K}^+ = \left\{ k_{n} | c_n= y_{rl} \right\}$, and its negative pairs ${K}^- = \left\{ k_{n} | c_n\neq y_{rl} \right\}$, a regular contrastive loss function is used:
[image: ]
[bookmark: experiments]where $R_l$ denotes the realistic LR representation set.
To summarize, during the whole training phase, we first train the network is trained with the HR and LR images from $\mathcal{D}_{s}$ by $\mathcal{L}_{Stage1}$. Then we it is trained with the multiple LR images, also from $\mathcal{D}_{s}$ by $\mathcal{L}_{Stage2}$. Finally, we it is fine-tuned on each $\mathcal{D}_{r}$ by $\mathcal{L}^{'}_{Stage2}$.
Experiments
Data sets. EExisting works train the coupled HR and LR networks with different data sets. Following ArcFace\cite{deng2019arcface}, we train our network is trained on the MS1M-ArcFace. We resize the oOriginal HR images are resized from 112$\times$112 to 56$\times$56, 28$\times$28, 14$\times$14, and 7$\times$7 to synthesize LR images by via bicubic interpolation and rescale them to the initial input size. We conducted eExperiments are conducted on eight benchmark data sets, i.e. SCFace \cite{grgic2011scface}, QMUL-SurvFace \cite{cheng2018surveillance},QMUL-TinyFace \cite{cheng2018low}, LFW \cite{huang2008labeled}, CFP \cite{sengupta2016frontal}, AgbDB-30 \cite{moschoglou2017agedb}, IJB-B \cite{whitelam2017iarpa}, and IJB-C \cite{maze2018iarpa}. 
The SCFace, QMUL-SurvFace, and QMUL-TinyFace are realistic facial face data sets. We conduct fine-tuning tune on their training sets respectively and use their testing sets to compare our results with state-of-the-artSOTA methods on their testing sets. The SCFace data set is captured by five video surveillance cameras located at three different distances, : 4.20 m (d1), 2.60 m (d2), and 1.00 m (d3). It includes 4,160 images of 130 subjects. Following previous works \cite{lu2018deep}, we randomly sample 80 out of 130 subjects for fine-tuning and use the rest for testing Rank-1 accuracy. The QMUL-SurvFace data set includes 463,507 images of 15,573 distinct identities. Following Cheng et al.'s work \cite{cheng2018surveillance}, we evaluate the metrics of TPIR20(\%)@FPIR and AUC for face identification. There This yieldsare 60,294 images from 5,319 subjects as the gallery;, 60,423 images from 5,319 subjects as mated probes;, and 12,1736 distractor images as unmated probes. We also evaluate the metrics of TAR@FAR, AUC, and Mean.Acc for face verification. There are 5,320 positive pairs and 5,320 negative pairs. The QMUL-TinyFace data set includes 169,403 images of 5,139 identities. Following Cheng et al.'s work \cite{cheng2018low}, we evaluate the metrics of Rank-1, 20, 50, and mAP for face identification. There are 4,443 images from 2,569 subjects as the gallery;, 3,728 images from 2,569 subjects as mated probes;, and 153,428 distractor images as unmated probes.	Comment by Diane Pulvino: Do I have this right?	Comment by Diane Pulvino: Fix this number
The LFW, CFP, AgbDB-30, IJB-B, and IJB-C are HR face testing sets. We resize them to the same four low resolutions as the training set for ablation studies. The LFW data set contains 13,233 web-collected face images from 5,749 different subjects. The CFP data set consists of 10 frontal and four profile images of 500 individuals for 7,000 images. The AgbDB-30 data set contains 16,488 images of 568 distinct subjects. We evaluate rRank-1 accuracy is evaluated on these three test sets. The IJB-B data sets are is composed of 1,845 identities with 21,800.8K still images and 55K 55,000 frames. For face verification, 10,270 positive pairs and 8M negative pairs are matched. The IJB-C data set further extends IJB-B, including 31,334 images of about 3,500 subjects and 117,542 unconstrained video frames. For face verification, 19,557 positive pairs and 15,638,932 negative pairs are matched. Following ArcFace\cite{deng2019arcface}, we evaluate TAR (@FAR=1e-4) on these two test sets. Furthermore, according to the DCR \cite{lu2018deep}, the sizes of the images from LFW are also resized to 8$\times$8, 12$\times$12, 16$\times$16, 20$\times$20, and 112$\times$96 to compare with existing works.	Comment by Diane Pulvino: M?
Implementation Details. We adopt SE-LResNet50E-IR \cite{deng2019arcface} as the backbone of the HR and LR networks. When pre-training the HR network, the input size is 112$\times$112 and the output is a $512-d$ representation. Then the parameters of the well-trained HR network are copied to the LR network for further experiments. In stage one, the stochastic gradient descent (SGD) (SGD) is taken as our the optimizer, with the initial learning rate $1 \times {10}^{-3} $, momentum 0.9, and weight decay $5 \times {10}^{-4} $. We proceed to train with 16 epochs and divide the learning rate by 10 on \{4, 8, 12\}-$th$ epochs for better convergence. Each $e^i$ is set to 4four. In stage two, we also use the SGD optimizer with the learning rate of  $1 \times {10}^{-5} $ and 4 four epochs. 
Following a previous work\cite{fang2020generate}, the we take baseline is The the LR network trained  by ArcFace loss with these synthetic LR images as Baseline. The optimal values for the hyper-parameters, i.e., {$\varphi_{1}$, $\varphi_{2}$, $\varphi_{3}$, $m$, $\tau$, and $\lambda$}, are searched and fouind to be \{0.1, 100, 10, 0.5, 0.1, 0.99\}. All the experiments are conducted with PyTorch 1.6.0 on two NVIDIA GeForce RTX 3090 GPU with 48GiB memory.
[bookmark: comparisons-with-sota-methods]Comparisons with to State-of-the-ArtOTA Methods
We compared our method with existing top performers on four benchmark data sets, : LFW, SCFacem, QMUL-SurvFace, and QMUL-TinyFace. On each data set, our method is only compared with to the methods whose with reported results on this data set are reported in their papers. Note that on the three realistic LR data sets, the TMR method with only the first stage is fine-tuned by ArcFace loss to getfor a fair comparison with the TMR, which has both stages and is fine-tuned by $\mathcal{L}^{'}_{Stage2}$
Results on LFW. The comparison between the experimental results of the proposed approach and other existing methods on the LFW data set is presented in Table [table1]. As shown in the table, we the proposed method outperforms prior works across all input sizes. In particular, our TMR network achieves the highest accuracy of 95.9%, 97.9%, 98.7%, 99.1%, and 99.7%, as well as an improvement of 1.3%, 0.8%, 0.4%, 0.6%, and 0.4% compared withover BaselineBaseline. The improvement of performance is more significant at better for smaller resolutions, indicating that our model is has good adaptabileity in at representation learning with low resolutions. The reason is that bBoth DCR and TCM minimize the distance only between the representations at the final layer only. The intermediate features, which always contain the structural patterns and act as as significant differentiating factors in face recognition, are left unconstrained. Our TMR network introduces supervision on multi-scale intermediate features to fully capture the guidance from HR to LR images, thus obtaining more robust representations. The results of experiments on the LFW data set show that our approach is especially beneficial in variousat lower resolutions.	Comment by Diane Pulvino: Unconstrained or unleveraged?
Face verification accuracy (%) of different methods using different probe sizes on the LFW data set. Our baseline is the LR network trained by ArcFace loss.
	Methods
	88
	1212
	1616
	2020
	11296


	ResNet (He et al. 2016)
	72.7
	84.1
	92.3
	95.4
	98.7

	ResNet-FT
	88.9
	93.8
	95.9
	96.8
	98.8

	Trunk (Lu, Jiang, and Kot 2018)
	92.2
	93.6
	95.5
	96.8
	98.4

	DCR (Lu, Jiang, and Kot 2018)
	93.6
	95.3
	96.6
	97.3
	98.7

	TCN (Zha and Chao 2019)
	90.5
	94.7
	97.2
	97.8
	n/a

	Baseline
	94.6
	97.1
	98.3
	98.5
	99.3

	Ours(Stage1)
	95.5
	97.5
	98.5
	99.0
	99.6

	Ours(Stage1+Stage2)	Comment by Diane Pulvino: Perhaps call it TMR?
	95.9
	97.9
	98.7
	99.1
	99.7



Rank-1 IR(%) of face identification on SCFace data set. Testing without fine tuning is indicated by ’w/o FT.’ means testing without fine-tuning.
	
	d1
	d2
	d3
	avg.

	DCR (Lu, Jiang, and Kot 2018)
	73.30
	93.50
	98.00
	88.27

	TCN (Zha and Chao 2019)
	74.60
	94.90
	98.60
	89.37

	C-T (Massoli, Amato, and Falchi 2020)
	45.10
	85.90
	96.10
	75.70

	FAN (Yin et al. 2020)
	77.50
	95.00
	98.30
	90.30

	FAN w/o FT
	62.00
	90.00
	94.80
	82.30

	DDL (Huang et al. 2020)
	86.80
	98.30
	98.30
	94.40

	RAN (Fang et al. 2020)
	81.30
	97.80
	98.80
	92.63

	RAN w/o FT
	70.50
	96.00
	98.00
	88.17

	MIND (Low, Teoh, and Park 2021)
	81.75
	98.00
	99.25
	93.00

	DA (Khalid et al. 2020)
	88.30
	98.30
	98.60
	95.00

	Baseline w/o FT
	76.75
	95.00
	96.25
	89.33

	Ours(Stage1) w/o FT
	78.25
	96.50
	97.25
	90.67

	Ours(Stage1+Stage2) w/o FT
	79.25
	97.00
	97.75
	91.33

	Baseline
	85.50
	96.25
	97.50
	93.08

	Ours(Stage1)
	89.00
	98.25
	99.00
	95.42

	Ours(Stage1+Stage2)
	91.25	Comment by Diane Pulvino: Should this be bold?
	99.50
	99.50
	96.75


Results on SCFace Data set. Our method is Compared compared with the SOTA methodsto state-of-the-art methods, such as DCR (Lu, Jiang, and Kot 2018), TCN (Zha and Chao 2019), T-C (Massoli, Amato, and Falchi 2020), FAN (Yin et al. 2020), DDL (Huang et al. 2020), RAN (Fang et al. 2020), MIND (Low, Teoh, and Park 2021), and DA (Khalid et al. 2020), ). we report tThe Rank-1 accuracy on the SCFace data set, as illustratedis shown in Table [table2]. Our proposed TMR network outperforms them others by 0.85%, 1.00%, 0.25%, and 1.28% in d1, d2, and d3 distances and the average. Furthermore, our method brings a rise ofimproves over Baseline improvement by 5.75%, 3.25%, 2.00%, and 3.67% over the Baseline. The version without fine -tuning also outperforms RAN w/owithout FT fine tuning by 8.75%, 1.00%, and 3.16% in d1 and, d2 distance and average. This is probably likely because that previous works all focus on the representation matching only between HR and LR images alone, ignoring the correlation between multiple LR images. Unlike existing methodsIn contrast, we propose a novel multi-resolution contrastive loss to force clustering multi-resolution LR representations of the same class to cluster and dispersion of the representationsones with different classes to disperse. Consequently, our network predicts resolution-adaptive representations and acquires achieves better performance. The performance reflects the superiority of our TMR network in the open-set scenario.

Face identification results on QMUL-SurvFace.
	
	30%
	20%
	10%
	1%
	

	VggFace (Parkhi, Vedaldi, and Zisserman 2015)
	6.5
	4.8
	2.5
	0.2
	9.6

	FaceNet (Schroff, Kalenichenko, and Philbin 2015)
	12.7
	8.1
	4.3
	1.0
	19.8

	DeepID2 (Yi, Wang, and Tang 2014)
	12.8
	8.1
	3.4
	0.8
	20.8

	SphereFace (Liu et al. 2017)
	21.3
	15.7
	8.3
	1.0
	28.1

	CentreFace (Wen et al. 2016)
	27.3
	21.0
	13.8
	3.1
	37.3

	RAN (Fang et al. 2020)
	26.5
	21.6
	14.9
	3.8
	32.3

	Baseline
	20.8
	16
	10.1
	2.2
	29.3

	Ours(Stage1)
	25.2
	21.0
	15.7
	6.2
	33.4

	Ours(Stage1+Stage2)
	27.4
	23.2
	17.8
	7.7
	35.6



Face verification results on QMUL-SurvFace.
	
	30%
	10%
	1%
	0.1%
	
	Acc(%)

	VggFace (Parkhi, Vedaldi, and Zisserman 2015)
	83.2
	63.0
	20.1
	4.0
	85.0
	78.0

	FaceNet (Schroff, Kalenichenko, and Philbin 2015)
	94.6
	79.9
	40.3
	12.7
	93.5
	85.3

	DeepID2 (Yi, Wang, and Tang 2014)
	80.6
	60.0
	28.2
	13.4
	84.1
	76.1

	SphereFace (Liu et al. 2017)
	80.0
	63.6
	34.1
	15.6
	83.9
	77.6

	CentreFace (Wen et al. 2016)
	95.2
	86.0
	53.3
	26.8
	94.8
	88.0

	FAN (Yin et al. 2020)
	71.3
	44.6
	12.9
	2.8
	76.9
	70.9

	DDAT (Jiao et al. 2021)
	90.4
	75.5
	40.4
	16.4
	n/a
	83.6

	Baseline
	90.1
	69.7
	27.5
	7.7
	89.8
	81.5

	Ours(Stage1)
	94.0
	82.1
	45.6
	16.8
	93.5
	86.2

	Ours(Stage1+Stage2)
	95.8
	88.0
	57.7
	20.7
	95.4
	89.1


Results on QMUL-SurvFace and QMUL-TinyFace Data setSets. On the QMUL-SurvFace data set, we evaluate the metrics of TPIR20(%)@FPIR and AUC for face identification and TAR@FAR, AUC, and Mean.Acc for face verification. As shown in Table [table3], we our method outperforms the results of HR methods directly cited from QMUL-SurvFace by 0.1%, 2.2%, 4%, and 4.6% on the TPIR during face identification testing. Our TMR also achieves better performance than HR methods during face verification, as shown in Table [table4]. These results indicate that it is challenging to directly extract discriminative representations from LR images using HR face recognition methods directly due to the details missing from LR images. Instead, our approach exploits the guidance from HR images to LR images in the common space. Compared with LR methods, even Although RAN uses deep networks rather than down-sampling to generate LR inputs of different sizes instead of down-sampling, we stillour method improves the face identification performance by increasing 3% on the AUC in Table [table3]. This validates that our the method oTMR network of fine-tuning the clustering distribution with realistic LR images is better than using generated LR images. Moreover, Table [table4] displays shows that our method achieves the state-of-arecomparable face verification results compared with to FAN and DDAT. In summary, our multi-resolution clustering method is more suitable for identity-robust representation learning than the disentangled-based and adversarial-based methods.	Comment by Diane Pulvino: Comparable or superior?
On the QMUL-TinyFace data set, we evaluate the metrics of Rank-1, 20, 50, and mAP for face identification. As shown in Table [table5], our approach achieves the SOTA best Rank-1 accuracy of 70.9%, Rank-50 accuracy of 85.6%, and mAP of 64.8% for face verification. Although the method DADA method trained on synthetically down-sampled LR images performs better than our method in Rank-20 accuracy, our method achieves better performance in all the other metrics.
Since most faces are barely visible in the QMUL-SurvFace and QMUL-TinyFace data sets, facial recognition on these two data sets is rather challenging. Despite that, we our method still yields significant gains over the Baseline, which demonstratedemonstrating the effectiveness of our method ion real -world uncooperative surveillance scenes.

Face identification results on QMUL-TinyFace.
	Methods
	Rank-1
	Rank-20
	Rank-50
	mAp

	VggFace (Parkhi, Vedaldi, and Zisserman 2015)
	30.4
	44.5
	48.4
	24.6

	DeepID2 (Yi, Wang, and Tang 2014)
	17.4
	25.2
	28.3
	12.1

	SphereFace (Liu et al. 2017)
	22.3
	35.5
	40.5
	16.2

	CentreFace (Wen et al. 2016)
	32.1
	44.5
	48.4
	24.6

	CSRI (Cheng, Zhu, and Gong 2018a)
	44.8
	60.4
	65.1
	36.2

	C-T (Massoli, Amato, and Falchi 2020)
	58.6
	73.0
	76.3
	52.7

	MIND (Low, Teoh, and Park 2021)
	66.8
	n/a
	n/a
	n/a

	DA (Khalid et al. 2020)
	70.4
	82.2
	85.4
	63.2

	Baseline
	56.6
	72.2
	77.8
	53.1

	Ours(Stage1)
	64.0
	77.5
	82.1
	60.4

	Ours(Stage1+Stage2)
	70.9
	81.3
	85.6
	64.8
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[bookmark: ablation-study-and-analysis]Ablation Study and Analysis
As demonstrated in Section 3, our framework consists of two stages. We conduct ablationAblation studies are conducted to validate the effectiveness of each proposed part. Note that when testing on three realistic data sets, we fine-tune thethe LR network is fine-tuned on them in the second stage, which affects the performance. Therefore, for the ablation studies of the proposed modules, such as affinity matrix distillation, experiments in Table [table6] are done performed only on the five HR images sets. We resize tThe HR images are resized to four resolutions and conduct the experiments are conducted on the generated synthetic LR images. In the followingHere, we present detailed analyses of the results in Table [table1]-[table6].
Effect of Affinity Matrix Distillation and Mutual Information Maximization. An affinity matrix distillation (AMD) is introduced in the first stage To to utilize the guidance from the HR to LR images at the intermediate features, we introduce an affinity matrix distillation (AMD) in the first stage. As shown in Table [table6], the AMD has some beneficial effectsts over the Baseline, which indicateindicating that the structural patterns of facial contour and shape have a significant influence on resolution-invariant feature learning. Meanwhile, We also maximize the mutual information as an alignment manner between the HR and LR representation. From Table [table6], the mutual information maximization (MIM) yields improvements overplays an improved role compared to the Baseline. This is because MIM increases the approximation of the representation distribution by reducing the distance between the joint and marginal distributions from HR and LR representations. We consider category labels to estimate these two distributions for the distillation of semantic patterns.
Effect of Curriculum Learning Strategy. Existing methods randomly chose the resolution of the LR image when generating LR and HR image pairs,When generating LR and HR images pair, the resolution of the LR image is randomly chosen in existing methods, which causes impedingslow convergence. In our method, a simple-to-complex curriculum learning strategy (CLS) is designed to facilitate the training of LR and HR image matching. From Table [table6], the curriculum learning strategy reflects a particular effect, especially at lower resolution. However, at the 5656 size of IJB-B and IJB-C testing, using the curriculum learning strategy yields worse results than not using itworse results than Baseline. These This results shows that the simple-to-complex strategy sacrifices some higher resolution effects to smoothly adapt to the lower resolution smoothly.
Effect of Multi-Resolution Contrastive LossThe Second Stage. Although the representations of multiple LR images are clustered around the HR representations after stage one, the domain discrepancy among different LR representations still remains. We introduce a multi-resolution contrastive loss to address this problem. Tables 1-6 prove that our network performs better with both stages than it does with stage one alonewith stages one and two performs better than stage one alone. As illustrated in Figure [fig3], We also presents the ROC curves on the QMUL-SurvFace data set for face identification and verification, and the CMC curves on the QMUL-TinyFace data set for face identification. These results verify that MRC loss in the second stage facilitates the LR network by learning the representations with high intra-class compactness and inter-class discrepancy.
Visualization. Besides In addition to quantitative results, we alsoFigure [fig4] provides the t-SNE visualization of the learned representations for the Baseline and out our methods with at different stages in Figure [fig4]. Twenty subjects wereWe randomly selected 20 subjects from the test set of SCFace, ; and each subject includes an HR image and 15 LR images. The results of visualization are performed shown after fine-tuning. As we can seeshown, stage one obtains preliminary clustering from chaotic distribution, and stage two significantly improves the compactness of clustering.
[bookmark: conclusion]Conclusion
In this paper, we propose a novel Twotwo-stage Multimulti-scale scale Resolutionresolution-adaptive (TMR) method for low-resolution face recognition. Dissimilar toUnlike previous works, the proposed TMR method fully captures the HR-to-LR guidance and the correlations between the multiple LR images by introducing a multi-scale distillation on intermediate features in the first stage and a multi-resolution representation clustering in the second stage. Furthermore, a curriculum learning strategy is introduced for a smooth training of the LR network. Experimental results on eight widely used benchmark databases demonstrate the superiority of our method. The effectiveness of each stage and the proposed module areis also verified by comprehensive ablation studies and qualitative visualization.
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