Weakly Supervised Dual Learning for Facial Action Unit Recognition
Abstract - Current work research of on facial action unit (AU) recognition typically requires fully AU-annotated facial images. Compared with to relatively easy facial expression labeling, AU annotation is a time- consuming, expensive, and error- prone process. Inspired by dual learning, we propose a novel weakly supervised dual learning mechanism to train facial action unit classifiers from expression-annotated images. Specifically, we consider two dual tasks: AU recognition from facial images as the main task, and face synthesis given AUs as the auxiliary task. The former is the main task, and the latter is the auxiliary task. For AU recognition, we enforce satisfaction between the recognized AUs satisfied the expression-dependent and expression-independent AU dependencies, i.e., the domain knowledge about expressions and AUs. For face synthesis given AUs, we minimize the difference between the synthetic face and the ground truth face, which has the sameidentical recognized and given AUs as given AUs. Through By optimize optimizing two the dual tasks simultaneously, we successfully leverage their intrinsic connections as well as domain knowledge about expressions and AUs to facilitate the learning process of AU classifiers from expression-annotated image. Furthermore, we extend the proposed weakly supervised dual learning mechanism to semi-supervised dual learning scenarios with partially AU-annotated images. Experimental results on three benchmark databases demonstrate the effectiveness of the proposed approach in both AU recognition from facial images and face synthesis given AUsfor both tasks.

I. INTRODUCTION 
Facial behavior is one of the most important channels for emotional communication between humans. Both facial expression categories and facial action units (AUs) are adopted by researchers to describe facial behavior. Therefore, more and more works Recent research focuses on automatic facial expression recognition [1]–[5], facial action unit recognition [6]–[10], simultaneous facial expression and action unit recognition [11], or facial expression and action unit intensity estimation [12], [13] in recent years. Unlike fFacial expression categories have not been clearly defined by researchers, but, whose numbers and definitions have not been reached an agreement by researchers, the number and the definitions of AUs are clearly described in the facial action coding system (FACS) developed by Ekman and Friesen [14]. Furthermore, any facial expression can be decomposed by into the combinations of several AUs, . For example,like a smile can be identified as the upward movement of the lip corners, which corresponds to AU12 [15]. Therefore, we focus on AU recognition in this paper.

Current AU recognition methods typically include a supervised learning, and thus requires fully AU-annotated facial images. Since AUs describe local and subtle local facial changes, AU labels are usually providedtypically must be provided by AU-coding experts. Manual annotating annotation of AUs is time -consuming and error proneprone to error. Compared to AU, fFacial expressions, on the other hand, describe global facial behaviors. They can be annotated more quickly and accurately, even by non-experts. There are strong dependencies between facial expressions and AUs due to underlying facial structures and muscle movement patterns.Furthermore, there exist strongly dependencies between expressions and AUs due to the underlying facial structures and facial muscle movement patterns. The emotional facial action coding system (EMFACS) [17] lists emotion-related AU combinations. For example, people typically show happiness by raising their cheeks and stretching their mouths [16]. The emotional facial action coding system (EMFACS) [17] lists emotion-related AU combinations. Prkachin et al. [18] found that pain intensity can be inferred from the combination of several AUs (i.e., AU4, AU6, AU7, AU9, AU10, and AU43). In addition to strong dependencies between expressions and AUs, dependencies among AUs should not be ignoredThere are also dependencies among AUs. For example, when AU1 appears, AU2 is also highly likely to be present, appears with a high probability, and vice versa. While wAU12 and AU15 are rarely seen concurrentlyhen AU12 appears, AU15 rarely appears, and vice versa [19]. Weakly supervised AU classifier learning can leverage this domain knowledge using facial images with expression annotations, but not AU labels.We refer to these as
 domain knowledge, which may be leveraged in weakly supervised AU classifier learning from facial images with expression annotations, but without AU labels.

Two tasks, i.e., AU recognition from facial images and face synthesis given AUs, are emerged inn dual forms. They have are intrinsically connections connectedwith each other, since they can forming a closed loop [20]. HoweverDespite this connection, current research studies the two tasks separately., current AU recognition from facial images and face synthesis given AUs are studied separately. To the best of our knowledge, few works leverage their duality to jointly train the models of two the dual two tasks jointly, and utilize their connections. Inspired by He et al.’s work [20] on dual learning from natural language translation,  proposed by He et al. [20], we propose a novel weakly supervised dual learning mechanism to simultaneously train facial action unit classifiers from expression-annotated images and a face synthesis model given AUs simultaneously. Specifically, when one iteration beginningan iteration commences, one feature vector is inputted to the AU classifier and converted to the middle AU output. The AU evaluation model gives the first objective term according to the degree of consistence consistency between the predicted AUs and the domain knowledge. The face generator generates the face from the predicted AU labels. This step produces the second objective term: t that is the log likelihood of the original face given the synthetic face. We train the two tasks simultaneously by maximizing the total objective. The training process is shown as Figure 1. Before the dual learning process, we train the AU evaluation model is trained from the domain knowledge, including considering three kinds of AU conditional probability (introduced in Section III-A1). We sample the pseudo- AU labels from the summarized domain knowledge. After that, a restricted boltzmann Boltzmann machine (RBM) model is used to capture the label distribution from pseudo- AU data, and the likelihood of AU labels is used as the first objective term.

The rest of the paper is organized as follows. In Section 2, we introduce review the related works on dual learning and AU recognition. In Section 3, we propose our dual AU learning method and the model for learning of AU evaluation model from domain knowledge. In Section 4, sufficient experiments are conducted on three databases annotated with AUs and expressions simultaneously. The last section concludes our paper.	Comment by Diane Pulvino: So all three databases use AU- and expression-annotated images? That doesn’t seem like weakly supervised learning…

[image: ]
Fig. 1. The frame work of weakly supervised dual AU learning. Facial feature points extracted from one facial image are inputted to the AU classifier, yielding and get the middle AU output, . The AU evaluation model is trained from domain knowledge given the first objective term. The face generator generates face from AU outputuses the AU output to generate the face, and this step produces the second objective term.

II. RELATED WORK
A. Dual learning	Comment by Diane Pulvino: Make sure your headings are capitalized consistently.
Dual learning was first proposed in He et al.'s work [20] of on neural machine translation (NMT). Specifically, they proposed a dual learning mechanism to reduce the requirement of labeled data in two dual translation tasks, e.gi.e.., English-to-French translation (primalprimal) versus and French-to-English translation (dual). The learning process of two translators involves two agents. Each agent only understands one language. First, the primary translator converts the sentences from the first agent and sends it them to the second agent., and then tThe second agent uses a pre-trained language model to evaluates how  confidence thatt the received message is a natural sentence with a pre-trained language model. The dual translator converts the received message and sends it back to the first agent, and the first agent evaluates what extent the consistency between the reconstructed and original sentences are consistent with the original. With such a dual-learning gameIn this way, two translators can simultaneously optimize learning from unlabeled data, and optimize simultaneously.

Considering the similarity between image translation and text translation, Yi et al. [21] extended this dual learning method to image-to-image translation with using generative adversarial networks (GANs) [22]. They used two generators as the two image translators, and two discriminators as two the image evaluation models. Unlike dual learning for machine translation [20], whose in which evaluation modes are pre-trained from language domain knowledge existing in languages, Yi et al.’s unsupervised dual learning method for image-to-image translation trains the evaluation models and image translators through an adversarial framework.

In addition to learning with unlabeled data, dDual learning can also be used in supervised learning tasks. Xia et al. [23] proposed a dual supervised learning method, which that exploits the probabilistic correlation between two tasks to jointly regularize the  training process of two dual tasks jointly. Considering that many tasks have structural duality at the model level as well as the data level,are of structural duality/symmetry not only in data level, but also in model level, Xia et al. [24] proposed model-level dual learning (MDL), which takes duality of tasks into consideration, and ties the similar model parameters that playing similar roles in the two tasks.

Although AU recognition from facial images and face synthesis given AUs can be regarded as two dual tasks, to the best of our knowledge, there is has been no work considering dual learning to optimize these two tasks jointly and utilize their connections effectively. Therefore, in this paper, we propose a novel weakly supervised dual learning method for AU recognition from facial images with expression annotations only,  and face synthesis given AUs.  The domain knowledge about AUs and expressions is leveraged to pre-train the AU evaluation model.  Synthetic faces are evaluated by tTheir difference from thece between the synthetic face and the ground truth faces.  which has the same recognized AUs as given AUs is used to evaluate synthetic faces. ThroughBy  optimizing these two dual tasks jointly, we can successfully explore the domain knowledge inherent in facial structure and the connections betweenin dual tasks to train AU classifiers usingwith data labeled only with only expressions-labeled data. This significantly relieves the burden of AU annotations significantly.

Compared with currentCurrent dual learning work , which is either unsupervised, requiring unlabeled data, leaning or fully supervised learning, requiring fully labeled data. we We propose a novel weakly -supervised learning approach, and further extend it to a semi-supervised learning approach. Unlike current dual learning work, which requires unlabeled or fully labeled training data from two tasks, weThis approach only needs weakly labeled data from the main task, i.e., facial images with expression annotations.

B. Action Unit recognitionRecognition
A comprehensive survey on facial action unit recognition can be found in [25]. In this section, we only analyzefocus on AU recognition works that do not require fully -AU- annotated images.

AOnly recently, a few worksrecent works have focused on AU recognition from partially AU- annotated samples. Song et al. [8] proposed a novel Bbayesian graphical model (BGCS) that encodes sparsity and co-occurrence structure of facial action units via compressed sensing and group-wise sparsity- inducing priors. Their proposed method can handle partially observed labels by marginalizing over the unobserved values as a part of the inference procedure. Wu et al. [26] proposed a multi-label learning method (MLML) that explicitly handles missing labels (MLML) by enforcing  the consistency between the predicted labels and the provided labels, as well as the local smoothness among the label assignments. Instead of using the same features for all AU classes as in Wu et al.’s work, Li et al. [27] extended the MLML method to discriminate each AU based on the most related features. All of these works require at least partial AU labels to learn AU classifiers.

To the best of our knowledge, there are so far onlyhave been only six works that recognizeon expression-assisted AUs assisted by expressionsrecognition. Wang et al. [28] proposed an expression-assisted AU recognition method under incomplete AU labeling. They constructed a bayesian Bayesian network (BN) to capture both the dependencies among AUs and the dependencies between AUs and expressions. After training, the AUs of testing images are inferred by combining the measurements and the AU relations in the BN model. Their proposed method successfully uses expression labels as hidden knowledge to complement the missing AU labels. However, both expression labels and AU labels are required to learn AU classifiers, although AU labels may be partially missing. Wang et al. [7] proposed an AU recognition method using expression as privileged information, requiredwhich is during training onlyonly required during training. They used a 3-way RBM to capture the global dependencies between expressions and AUs. Their method requires both complete AU and expression labels during training.

The other four works learn AU classifiers without AU labels. Ruiz et al. [6] proposed hidden-task learning (HTL) to learn both the AU classifier from the image and the expression classifier from the AU without anywhen AU annotations are unavailable. They exploited the domain knowledge of expression-AU relations using extra large-scale facial images labeled with expressions. but with extra large-scale facial images labeled with expressions by exploiting domain knowledge of expression-AU relations. They also extended HTL to semi-hidden task learning (SHTL) when partially AU- annotated samples are provided. Ruiz et al.'s method successfully leverages the domain knowledge of expression-AU relations to train the AU classifier from the training data when AU labels are limited or unavailable. However, their method only considers the conditional probability of one a single AU under one a single expression, and requires a large-scale database of expression-labeled images database. Furthermore, any error caused by the expression classifier will propagate to the AU classifier.	Comment by Diane Pulvino: I’m not sure why you say ‘large-scale’ instead of just ‘large’

Wang et al. [29] proposed an RBM prior (RBM-P) model which that learns the prior joint AU distribution from the pseudo AU labels generated from the summarized domain knowledge, . It and then learns the AU classifier by maximizing the its log likelihood of AU classifier. They considered not only the conditional probability of one AU under one expression, but also its inverse, as well as also the conditional probability of one AU under another AU, or one expression and another AU.

Zhang et al. [30] proposed a multiple AU classifier learning method (LP-SM) by that incorporating incorporated the AU domain knowledge into the objective on AUs as the constraints into the objective. They comprehensively summarized the domain knowledge, comprehensively and represented represented itthe domain knowledge as the inequality relations among the AU probabilities.

Peng et al [10] proposed an AU recognition adversarial network (RAN) based on GAN. They used the same domain knowledge and pseudo AU label sampling method as [29], and utilized an adversarial framework to achieve the similarity between the distribution of the predicted labels and the distribution of the pseudo AU labels. The main difference between RAN and our method is that RAN only focusedfocuses only on the AU recognition task. While in this paper, we alsoOur method utilize theleverages  assistance of the dual task of the AU recognition task, i.e., the face synthesis task, to improve the performance of both AU recognition and face synthesis.

Although these four weakly supervised AU recognition methods leveraged the domain knowledge about expressions and AUs to facilitate the learning process of AU classifiers from expression-annotated facial images, they ignored the connectiondualitys between the tasks of AU recognition and its dual task, i.e. face synthesis. Therefore, iIn this paper, we propose a weakly supervised dual AU learning method to learning AU classifier with only expression-labeled data. We consider the primary AU recognition task and dual face synthesis task, and train them simultaneously by. We will pre-training an AU evaluation model learned from the domain knowledge about AUs and expressions.

III. PROPOSED METHOD
In this section, we propose a weakly supervised dual learning method that considers the AU classification task and the face synthesis task simultaneously. One facial feature vector is converted to an AU vector with using an AU classifier, and we give the first objective term according to an AU evaluation model learned from the summarized domain knowledge. Then weThe face is generated face from the middle AU output, ; this step has an objective term according indicating the difference between the original and the generated faces. In Section III-A, we introduce our weakly supervised dual AU learning method and extend it to semi-supervised learning. In Section III-B, we introduce the learning of AU evaluation model EMA.	Comment by Diane Pulvino: Not sure what you mean by ‘give’	Comment by Diane Pulvino: It seems like you do that in the next paragraph


We obey the procedure in [29] to learn AU evaluation model EMA obeying the procedure in [29]. Specifically, we first thoroughly summarize the domain knowledge about the AUs and expressions. Then, we sample pseudo AU labels for each expression from the summarized domain knowledge. Lastly, we train an RBM prior model to capture the AU distributiodistribution,n and use the likelihood of AU labels as the first objective term. Training of the The training of AU evaluation model is shown in figure Figure 2.

[image: ]
Fig. 2. Similar As into Wang et al.’s work [29], we learn an RBM model with the pseudo AU data sampled from domain knowledge as the AU evaluation model.

A. Dual AU Classifier Learning
1) Weakly Supervised Learning: Let [image: ] denote the training set, where [image: ] represents the d-dimensional facial feature vector and [image: ] is the expression label. P is the number of expression classes and N is the number of training samples. We consider two tasks, . the The main main task is to learn an AU classifier [image: ] from expression-labeled facial image samples with only expression labels,. the The auxiliary task is to learn a face generator [image: ], where L represents the dimension of AU vector. We will propose a weakly supervised dual learning machine to train the two tasks simultaneously. In our work, we learn two conditional distributions [image: ] and [image: ] for the main task and auxiliary tasks respectively, where y is the AU vector. f and g are obtained by maximum posteriori inference [image: ][image: ] and [image: ].	Comment by Diane Pulvino: Dimensions? Vectors? (I wasn’t sure if there was more than one)

For one feature vector x randomly sampled from the training set, we convert it to an AU vector with the AU classifier. Let [image: ] denote the output of the AU classifier, which actually is actually a probability vector. The evaluation model EMAEMA trained in Section III-B will evaluate how the consistent consistency between the AU output is witandh the domain knowledge. So, wWe set the first objective term [image: ], where Ex is the expression label of x. Next step, the face is generated fromwe will generate the face from the output of the AU classifier and set the second objective term for the face synthesis is set as [image: ]. So, our The goal for feature vector x is to maximize the total objective [image: ] is a hyper-parameter. For tThe objective for the whole training set, the objective is shown as follows:	Comment by Diane Pulvino: Write “where” after the comma or change the comma to a colon.
[image: ]
Where [image: ] is the regularized term, and β is the weight of [image: ]. Specifically, we use standard L2-regularization [image: ], [image: ]. For simplicity, we generate the feature points to represent the synthetic faces, so we usethe following linear function is used for AU classifier f and face generator g as follows:
[image: ]
Where σ is the sigmoid function, [t]>0:5 = sign (t–0.5), and [image: ]. The conditional distribution for the main task and the conditional distribution for the auxiliary task are shown as Equations 3 and 4, respectively.
[image: ]
[image: ]
In our work, wWe assume that thea multivariate Gaussian distribution for the learned condition distribution of the face synthesis task. learned condition distribution for face synthesis task is multivariate Gaussian distribution. In order tTo make ensure the conditional probability of x is only affected by g(y), we let the Σ be a constant matrix, like an identity matrix.

The derivation of [image: ] over [image: ] is shown as Equation 5, ; the derivations of [image: ] over [image: ] and [image: ] are shown as Equations 6 and 7, respectively. So, tThe parameters [image: ] and [image: ] can be updated by using the stochastic gradient ascent method.
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2) Extension to Semi-Supervised Learning: The proposed method can be extended to learn in a semi-supervised manner when partial AU annotations are available. Let [image: ][image: ] denote a subset of D that are annotated with AU labels, where [image: ] and L is the number of AUs. For samples with no AU annotations, the objective does not change. However, for samples annotated with AU labels, the objective is updated with an additional term minimizing the error between the predicted AUs and the ground truth AUs, which is show , as follows:
[image: ]
Where the [image: ] is the cross-entropy loss as shown in Equation 9, and [image: ] is a trade-off between two terms. When[image: ], the maximization problem is equivalent to learning in an unsupervised manner. Conversely, when [image: ], the maximization problem is equivalent to learning in a traditional supervised mannerlearning, ; which does not consider the dependencies among AU labels and the assistance of the auxiliary task are not considered.
[image: ]
[image: ]
The derivation of [image: ] over [image: ] is shown as Equation 10. Parameters are updated using The sstochastic gradient ascent is used to update parameters. The detailed training procedure is shown as Algorithm 1.

B. Learning the AU Evaluation Model
1) Summary of Domain Knowledge: Wang et al. [29] had introduced the detailed domain knowledge about AUs and expressions in detail. Following their work, we give a brief summary of domain knowledge in this section. The dDomain knowledge about AUs and expressions appears as conditional probabilities of one AU. There are three kinds of conditional probability: the, the first is the conditional probability of one AU under one expression, the the second is the conditional probability of one AU under another AU, andthe last is the conditional probability of one AU under one expression and another AU.

[image: ]

The first seven rows of Table I show the conditional probability of one AU under one expression. The conditional probabilities of the AUs under six basic expressions (the first six rows) are from [16]. For example, P(AU1=1|sadness)=0.6 and P(AU4=1|sadness)≥0.7. The blanks indicate these that the conditional probabilities of AUs are less than 0.2, like P (AU1|happiness)<0.2. The seventh row of Table I shows the conditional probabilities of six AUs under the pain expression according to Prkachin and Solomon pain intensity (PSPI) [31], like P(AU4=1|pain)≥0.5. As for other AUs, we don’t have any information.There is no information available for the other AUs.	Comment by Diane Pulvino: Should this have an =1?

The last thirteen rows of Table I show the conditional probability of one AU under another AU, which are summarized from [14] and [19]. The relations between two AUs include both co-existent and mutually exclusive relations. If two AUs are co-existent, the conditional probabilities should be greater than 0.5;, for example, P (AU1=1 |AU2=1)>0.5, and vice versa. If two AUs are mutually exclusive, the conditional probabilities should be less than 0.2;, for example, P (AU12=1|AU15=1) <0.2, and vice versa. We can see that the last thirteen rows are symmetrical.

The dDomain knowledge about the conditional probability of one AU under one expression and another AU is adopted from the emotion facial action coding system (EMFACS) [17], [32] as shown in Table II. Table II lists some AU combinations that frequently appear during the same expression with high appearance frequency under the condition of one expression. For example, AU4 and AU5 usually appear simultaneously during anger, so, P (AU4=1|AU5=1, anger)>0.5 and P (AU5=1|AU4=1, anger)>0.5. The relations in Table II are all co-existent relations among AUs.

TABLE I
THE CONDITIONAL PROBABILITY OF ONE AU UNDER ONE EXPRESSION OR ANOTHER AU [29]. HORIZONTAL AXIS REPRESENTS AU, AND VERTICAL AXIS INCLUDES EXPRESSIONS AND AUS.	Comment by Diane Pulvino: Why is this all caps? Make sure your tables, figures, and formulas are properly formatted according to the journal you’re submitting to.
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TABLE II
EXPRESSION-RELATED AU COMBINATIONS FROM EMFACS [17], [32].
[image: ]	Comment by Diane Pulvino: Interesting it’s not 5+7 for Anger.

2) Pseudo AU Label Sampling: In order to learn theing AU evaluation model, we sample some pseudo AU labels are sampled according to the three kinds of AU conditional probability. We generate pPseudo AU labels are generated for each expression. Probability parameters are generated Before before sampling, we generate probability parameters, except for some concrete conditional probabilities of AUs under expressions in Table I, like P (AU1=1|sadness) =0.6. Specifically, for conditional probability probabilities of one AU under one expression that are, which is greater than 0.7, like P (AU4=1|anger), we draw the probability parameters are drawn in the uniform distribution U(0.7, 1), ). and fFor those probabilities less than 0.2, like P(AU1=1|anger), we draw the probability parameters are drawn in the uniform distribution U(0, 0.2). Similarly, for the conditional probability of one AU under the pain expression, probability parameters are drawn from U(0.5, 1). For the conditional probability of one AU under another AU, without loss of generality, which might as well be set as P (AUj = 1|AUi = 1), ). if If AUi and AUj are co-existent, we draw P (AUj = 1|AUi = 1) is drawn from U(0.5, 1), ). if If they are mutually exclusive, we draw P(AUj = 1|AUi = 1) from is drawn from U(0, 0.2). After generating the probability parameters, we adopt the same sampling algorithm used in as [29] is adopted to generate pseudo AU labels for each expression.	Comment by Diane Pulvino: “might as well be set” doesn’t sound good here. Surely there’s one setting that’s better than another and if not, just say “We set it at…”

3) Learning RBM model: AThe joint AU probability is modeled by a restricted boltzmann Boltzmann machine [33] is used to model the joint AU probability. The This RBM we use consists of two types of binary notesnodes: visible units y and hidden units h. The visible nodes represent pseudo AU labels. In our work, we , an evaluation model is pre-trained an evaluation model under each expression before prior to learning the AU classifier and face generator.

The energy function of the RBM is defined as:
[image: ]
Where yi and hj are the components of y and h, respectively. [image: ] are parameters of RBM, c are biases of AU units, a are biases of hidden units, and U are weights between the AU units and the hidden units. L and q are the number of AUs and hidden units, respectively.

After learning the parameters of the RBM (the specific learning method could refers to [34]), we can easily calculate the marginal distribution of the visible units Pe(y) can be calculated through by marginalizing the hidden units as:	Comment by Diane Pulvino: Not sure what you mean here. Is found in [34]?
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Where[image: ] is a normalization constant. We set the evaluation model EMA(y) = log Pe(y). 

From EEquation 13 yields, we could obtain log Pe(y) as Equation 14, and the derivation of log Pe(y) over y is shown as Equation 15.
[image: ]

IV. EXPERIMENTS
A. Experimental Conditions
The proposed method is evaluated on three publicly available databases: the Extended Cohn-Kanade database (CK+) [35], the MMI database [36], and the UNBC-McMaster Shoulder Pain Expression Archive database [37].

1) Databases: Specifically, theThe CK+ database contains 593 video recordings from 123 subjects performing posed facial expressions. Each video starts from the onsetbegins with the expression onset frame and ends with the apex frame. The MMI database contains 2900 video recordings from 75 subjects displaying posed facial expressions. The UNBC database is a spontaneous expression database, which contains containing 200 video recordings from 25 patients suffering from shoulder pain. Each frame in the UNBC database is coded with PSPI. In this paper, the frames with a PSPI of five or higher are regard as ``“pain'' pain” frames, and those with a PSPI of zero are regard as ``“no pain'' pain” frames.

2) Frames: On the CK+ database, 309 video sequences from 106 subjects are annotated with six basic expressions, . so, wWe use the apex frame of each video sequence (309 frames in total). Similarly, oOn the MMI database, 171 video sequences from 27 subjects are annotated with six basic expressions and AUs, so 171 apex frames are used in our work. On the UNBC database, sSince only 30 video sequences from 17 subjects have pain frames on the UNBC database, we collect all pain and no pain frames are collected from these 30 video sequences (7319 frames in total).

3) AUs: On the CK+ database and the MMI database, we consider AUs whose in which the occurrence frequency of all samples is greater than 10%. So,Therefore, on the CK+ database, 12 AUs (1, 2, 4, 5, 6, 7, 9, 12, 17, 23, 24, and 25) are considered, and 13 AUs (1, 2, 4, 5, 6, 7, 9, 10, 12, 17, 23, 25, and 26) are considered on the MMI database. On the UNBC database, since we only have domain knowledge about six AUs (4, 6, 7, 9, 10, and 43), we consider these six AUs are all consideredin our paper.

4) Features: For a fair comparison with competing methods, we also use facial landmarks as features in our work, since most of our competing methods used facial landmarks as features. Some related works used texture- based features., while theHowever, facial landmarks are a better choose than texture based features to visualize the facebetter able to visualize the face. There are 49 and 66 facial feature points provided by the database constructer are used on the CK+ and the UNBC databases, respectively. On the MMI database, we extracted 49 feature points were extracted with IntraFace [38]. We normalized feFeature points were normalized using an affine transformation, so that the eye centers fall on the given positions for all images. After that, we use a Gaussian normalization for each dimension of features. For cross-database experiments, cCommon feature points are used for cross-database experiments.

5) Settings: We conduct weakly supervised and semi-supervised AU recognition experiments on three databases. For both weakly supervised and semi-supervised scenarios, we conduct within-database experiments via five-fold subject-independent cross- validation, and cross-database experiments. For semi-supervised experiments, we randomly miss AU labels with certain missing rateaccording to rates varying from 0.1 to 0.9. In order to reduce the impact of randomness, we conduct eEach experiment is conducted five times to reduce the influence of randomness, and the average F1 score (↑, the higher the better) is used as the evaluation metric. We also evaluate the face generator by root mean square error (RMSE) (↓, the lower the better). The hyper- parameters in Algorithm 1 are [image: ] , which are tuned on a validation set, and a grid search strategy is used. Specifically, for the maximum number of training steps, on the CK+ and MMI database,[image: ], and on the UNBC database, [image: ]. For learning rate [image: ]., For weight coefficients, [image: ] [image: ].

6) Comparisons: For weakly supervised scenarios, we compare the proposed method with HTL, RBM-P, RAN, and LP-SM. The results of RBM-P [29] and RAN [10] are copied from the original paper, since the experimental setting of these two works are completely as the same as oursidentical to our own. However, Ruiz et al. did not conduct experiments on the MMI database and adopted a different experimental strategy from us, so we copied use the results from [29], which re-conducted the experiments of HTL on the same databases and under the same experimental settings. Zhang et al. conducted experiments using two kinds of features, i.e., LBP and feature points, and did not conduct cross-database experiments. Therefore, twe compare the proposed method is compared to LP-SM using feature points, and do not compare to LP-SMbut not in cross-database experiments. The comparisons to LS-PM are only for reference only, since the experimental settings of LS-PM are different from ours. Specifically, LS-PM considered 8 AUs on the CK+ and MMI databases and, used 600 frames, and considered 3 AUs on the UNBC database. Furthermore, weOur method is also compared to SVM, which trains with fully AU-labeled data, in cross-database experiments.	Comment by Diane Pulvino: What does this stand for?

For semi-supervised scenarios, we compare our work with six state-of-the-art worksmethods, i.e., RAN, RBM-P, SHTL, BGCS, MLML, and BN, in within- database experiments. For cross-database experiments, we compare the proposed method to SHTL [29], RBM-P [29], and RAN [10]. Since Zhang et al. only conducted semi-supervised experiments with a missing rate of 0.5 only on the CK+ database, we do not compare to LP-SM.

Similar toAs in the weakly supervised scenario, the results of RBM-P and RAN are copied from the original paper. In order to keep the same experimental conditions, the results of SHTL, BGCS, MLML, and BN are copied from [29], which re-conducted their experiments.

For face synthesis, first, we first validate the assumption of Gaussian distribution. Then, we compare the proposed method with discriminative RBM (DRBM) [39], whose visible layer contains a feature vector and an AU label vector. We infer the facial features from the input AU labels through a Gibbs sampling method from the input AU labels..	Comment by Diane Pulvino: Or ‘feature vectors and AU vectors’ if there is more than one vector.

B. Weakly-supervised Supervised AU Recognition
The results of weakly supervised within- database experiments are listed in Table III. From the results on the three databases, we can find that the proposed method outperforms other methods with the highest average F1 score in most cases, demonstrating its superiority in for weakly supervised AU recognition.

TABLE III
WITHIN-DATABASE EXPERIMENTAL RESULTS (F1) OF WEAKLY SUPERVISED AU RECOGNITION (F1 SCORES).
[image: ]

Compared with to HTL, the proposed method achieves 57.66% improvement on the CK+ database, 23.62% improvement on the MMI database, and 69.01% improvement on the UNBC database. The proposed method considers more complete domain knowledge than HTL and introduces a face synthesis task to assist the learning of the AU classifier. Although HTL considers another task, i.e., the AU-expression classification task (Visiblevisible -task), in addition to the feature-AU recognition task (Hiddenhidden -task), they two tasks are not dual tasks and are trained independently. Furthermore, HTL trains two tasks independently.  The error caused by AU-expression classifiers may propagate to the feature-AU classifiers. Unlike HTL, we train the main AU recognition task and auxiliary face synthesis task simultaneously, thus so each task assists the other.two tasks can both assist each other.

Compared to RBM-P, the proposed method achieves 5.06% improvement on the CK+ database, 3.24% improvement on the MMI database, and 13.25% improvement on the UNBC database. Both RBM-P and the proposed method use domain knowledge to capture the joint AU distribution through the RBM model from domain knowledge, . while weThe proposed method also introduces a face synthesis task, the dual task of the AU recognition task,  (the face synthesis task) and utilizes the intrinsic connections between the two tasks for to learning of the AU classifier. The better superior results of the proposed method than those of RBM-P demonstrate the the effectiveness of the proposed method byof leveraging the dual task of the primary AU recognition tasks to help improve AU classifier learning.

Actually, RBM-P is a special modified version of our method, by that setting sets the weight of the reconstruction term 1-α as zero. For To better showing the benefits of theanalyze the impact of our reconstruction term, we have run the same set of experiments on three databases, by varying 1-α from 0.1 to 0.9. The results are shown as in Figure 3, in which the first column is shows the results of RBM-P. We can see that the performances reach the best Optimal performance is reached when the weights for the reconstruction term is are 0.3, 0.2, and 0.2 on the three databases, respectively, . This indicating indicates that the first objective term exploring domain knowledge plays a major rolehas a significant impact, and the reconstruction term can improve the AU recognition performances.

[image: ]
Fig. 3. The changing of AU recognition performances varying the as the weight for the reconstruction objective term from 0 to 0.9.increases.

Compared to RAN, the proposed method achieves 3.51% improvement on the CK+ database, 2.34% improvement on the MMI database, and 5.63% improvement on the UNBC database. Compared to LP-SM, the proposed method also achieves the better performances on the CK+ and MMI databases, demonstrating the superiority of the proposed method. Both RAN and LP-SM successfully leverages the assistance of domain knowledge and expression labels. However, we the proposed method also consider the assistanceis also assisted by the of auxiliary face synthesis task, and thus achieves the better performances. On the UNBC database, the average F1 of the proposed method is worse than that achieved by LP-SM. However, LP-SM only selected 300 apex frames with pain and 300 frames without pain on the UNBC database. This is significantly lesse used data are far less than what we consideredthan the proposed method considered. Furthermore, the recognized AUs of LP-SM are AU6, AU7, and AU12, which are different from ours. Therefore, the comparisons to LP-SM is only for reference.

TABLE IV
CROSS-DATABASE EXPERIMENTAL RESULTS (F1) OF WEAKLY
SUPERVISED AU RECOGNITION ON THE CK+ AND MMI DATABASES.
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TABLE V
CROSS-DATABASE EXPERIMENTAL RESULTS (F1) OF WEAKLY
SUPERVISED AU RECOGNITION ON THE CK+ AND UNBC DATABASES.
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TABLE VI
CROSS-DATABASE EXPERIMENTAL RESULTS (F1) OF WEAKLY
SUPERVISED AU RECOGNITION ON THE MMI AND UNBC DATABASES.
[image: ]
The results of weakly supervised cross-database experiments are listed in Tables IV, V, and VI. The proposed method outperforms RBM-P and RAN, with the highest average F1 scores in all cross-database experiments. This demonstrates the better superior generalization ability of the proposed method, which successfully utilizes the auxiliary face synthesis task to improvefor AU recognition. 

The experimental results in Table IV are generally higher than the results in Tables V and VI. TheThe CK+ and MMI databases are databases ofincorporate six basic emotions setting, while the UNBC database only contains pain or no pain expressions. The biases between the CK+ and MMI databases are much less than biases between the UNBC database and the CK+ or MMI databases. Thus, we can see that the experimental results in Table IV are generally higher than the results in the Table V and VI.

The cross-database experiments that train or test on the UNBC database are difficult scenarios for AU recognition due to these big database biases. The proposed method performs best in the experiments that train on the CK+ and MMI databases and test on the UNBC database, which further demonstrates that the proposed method can be more easily generalized to other databases, even when  thatthey are very different from the training set. The proposed method performs worse than HTL in the experiments that train on the UNBC database. This is because HTL trains on another large-scale facial expression database of six basic emotions setting. The proposed method still performs better than RBM-P and RAN, which also only trains on the UNBC database as we do.

In addition, wWe also compare the proposed method with SVM, which trains with fully AU-labeled data, . and weThe proposed method achieves better performances in all scenarios. The completely data-driven learning manner of SVM limits its generalization ability, while we the proposed method learns the AU classifier with domain knowledge but not ground truth AU labels.

C. Semi-supervised Supervised AU recognitionRecognition
The results of semi-supervised within- database  experiments on three databases are shown as Figure 4. From Figure 4, we can obtain the following observations:

First, the proposed method performs best in all scenarios, except for the experiment on the CK+ database with a missing rate of 0.6 on the CK+ database,, in which the proposed method is only worse than RBM-PRBM-P achieves the best performance. This demonstrates that the proposed method successfully leverages the auxiliary face synthesis task to improve the performance of AU recognition.

[image: ]
Fig. 4. Within-database experiments of semi-supervised AU recognition. Left: results on the CK+ database, ; Middle: results on the MMI database, ; Right: results on the UNBC database.
Secondly, as the missing rate increases, the trend of the experimental results varies from for different methods. The performances of HTL, RBM-P, RAN, and the proposed method fall very slowly on the three databases. However, the performances of BN, MLML, and BGCS decline faster as the missing rate increases, . This is particularly noticeable in the such as the performances of BN on the MMI and UNBC databases, the performances of MLML on the CK+ and MMI databases, and the performances of BGCS on the CK+ and UNBC databases. This may be because all of these three methods learn AU label correlation from the ground truth labels. Specifically, BN learns the relations between AUs and expressions from ground truth labels, MLML captures label smoothness and label consistency from ground truth labels, and BGCS exploits both sparsity and co-occurrence structure of ground truth labels. When there are few ground truth labels, these methods cannot optimally learn label correlations,These three methods cannot learn label correlations well from few ground truth labels. While while the methods learning label correlation from domain knowledge do not suffer from this problem.

Thirdly, RBM-P performs best better in all scenarios compared withthan BN, MLML, BGCS, and SHTL in all scenarios. MLML and BGCS had notdo not considered the assistance of expression labels. Although BN used uses expression labels to help improve AU classifier learning, BN it can only capture pairwise label correlations. SHTL also considersed the assistance of expression labels, but the domain knowledge used by SHTL isit uses is not incomplete. However, RBM-P thoroughly summarized summarizes domain knowledge and used uses an RBM model to capture global AU relations, thus achieved achieving betterbest performance in that these methods.

Lastly, the performances of RBM-P and RAN are similar, since both RAN and RBM-Pmethods leveraged comprehensive domain knowledge and made theenforce similar distribution of the predicted labels and the pseudo AU labels similar. The proposed method outperforms RBM-P in most cases, and RAN in all cases. Although RBM-P, RAN, and the proposed method capture global AU relations from complete domain knowledge, we the proposed method also considers the intrinsic connections of the dual task of the AU recognition task, which has intrinsic connections with AU recognition task. We It learns two tasks simultaneously to further enhance the performance of AU recognition.

For The results on semi-supervised cross-database experiments, the results are shown as in Figure 5. We can see that iIn most cases, the proposed method performs best in first two rows, especially the best performances in difficult scenarios for AU recognition (i.e., the experiments that test on the UNBC database) , demonstrate demonstrating the its best generalization ability of the proposed method utilizing face synthesis task to help AU recognition. However, the proposed method achieves a poor performanceperforms poorly in on experiments that train on the UNBC database. Maybe tThere are two possible reasons for this., the The first is that our methodwe only trains on the UNBC database and, does not use the other facial expression databases, with of six basic emotions. setting as SHTL does, the The second reason  is that only six AUs are considered on the UNBC database, which may be too few AUs tto generate the a face with so many feature points.



[image: ]
Fig. 5. Cross-database experimental results (F1) of semi-supervised AU recognition.

D. Comparison to Fully Supervised Methods
We compare the proposed weakly supervised method to four supervised methods that require fully AU-labeled data. The comparisons are shown in Table VII. The results of HRBM are from [40]. Since the experimental conditions of these methods are different from ours, these comparisons are only for reference. It's expected that the proposed method will perform more poorly than the performances of the proposed method are worse than that of these fully supervised methods, since we it trains multiple label classifiers without any AU annotations, while these four methods used all supervisory information. However, it's sSurprisingly, that the proposed method achieves comparable performancesperforms comparably. , or even betterIt even achieves superior performance compared over to HRBM on the CK+ database. These results demonstrate the effectiveness of the proposed AU recognition method that leverages domain knowledge and the assistance of the auxiliary face synthesis task. Note that due to the database biases, fully supervisory supervised information from ground truth labels may limit the generalization ability of algorithms to some extent, ; such asfor example, SVM performs poorly in cross-database experiments. the performances of SVM in cross-database experiments are poor. We Our method is better able to generalize, as it uses the domain knowledge that is independent on from the databases, thus achieve better generalization performances.

TABLE VII
COMPARISON OF F1 SCORES TO THE STATE-OF-THE-ART FULLY SUPERVISED METHODS
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E. Face Synthesis
In Section III-A1, we assume that the distribution of features given expressions satisfies Gaussian distribution. In this section, weThis section validates this assumption. We use the quantile-quantile plot (Q-Q plot) [43] with a 0.05 significance level, and randomly select one dimensional feature on the three databases. Additionally, we use Michael goodness of fit test [44] to give the boundary of acceptance interval. The results are shown in Figure 6. We can see that allAll points are very close to the line y = x, and most of them fall in the acceptance interval, so we can accept the assumption of normality. These demonstrate the normality assumption is reasonable.	Comment by Diane Pulvino: One on each?	Comment by Diane Pulvino: Is this correct?

[image: ]
Fig. 6. The normality test of geometry features on the three databases (Q-Q plot). Each blue point represents a sample in the databaseBlue points represent database samples. The broken red line is y = x. Two green lines are the boundary boundaries of acceptance intervals. The closer the plot is to the line y = x, the more it accepts the assumption of normality.

TABLE VIII
RMSE OF THE DRBM AND THE PROPOSED WEAKLY SUPERVISED AND
SEMI-SUPERVISED METHODS.
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Fig. 7. Two eExamples of original face and corresponding synthetic face.

Furthermore, we evaluate tThe performance of the facial image generator is evaluated with RMSE. Table VIII lists the results of the compared method (DRBM), the results of the proposed weakly supervised method, and the results of the proposed semi-supervised method (with a missing rate of 0.5) on the three databases. Figure 7 shows two examples of the original face and its corresponding synthetic facial points on the CK+ and UNBC databases. From which, we can see that the difference between synthetic faces and original is little.There is very little difference between the two.  	Comment by Diane Pulvino: Why did you choose this missing rate?

From Table VIII, we can obtain the following three observations: . firstFirst, the method performances best on the CK+ database are best and the performances on the and more poorly on the UNBC database are worst, which is consistent with the performances of AU recognition. Only six AUs are considered on the UNBC database, ; which cannotthis is not carry enough information to generate face with 66 facial points. Secondly, the proposed weakly supervised method performs better than DRBM, although DRBM uses AU-labeled data. This demonstrates the superiority of the proposed method not for face synthesis as well as only in AU recognition but also in face synthesis. Thirdly, the proposed semi-supervised method outperforms the proposed weakly supervised method, which is expected. Because aAdditional AU-labeled data can improve the performance of AU recognition, and better AU recognition performance can improve the performance of face synthesis.

V. CONCLUSION
[bookmark: _GoBack]In this paper, we introduce a face synthesis task to assist the learning of the AU classifier learning.. The AU recognition task and the face synthesis task are mutual dual tasks. We learn tThe AU classifier and face generator are learned simultaneously based on two objective terms.  The first is the log likelihood of the predicted AUs given from the evaluation model, which is trained from the summarized domain knowledge. The second is the log likelihood of inputted features according to the synthetic face. Compared to state-of-the-art methods, better our method achieves superior results inresults of our method in weakly supervised and semi-supervised experiments on three databases. This demonstrates the effectiveness of the proposed method in both AU recognition and face synthesis.
image3.png
D = {(xp,En)}Y

n=1




image4.png




image5.png
E; € {1,2, R P}




image6.png
f:RY — {0,1}F




image7.png
g: 40
{0,1}F — R




image8.png
Pf(-|x; 9AB)




image9.png
P9(-ly; ©pa)




image10.png




image11.png
arg max|P? (y|x: ©p)
y




image12.png
g(y) = argmax P9(x[y; Opa)




image13.png
Yomid =

Pf(-|x; G)AB)




image14.png
r1 (.Y%d) = EMA(ymiaﬂEx)




image15.png
7”2(}’2111) = log Pg(X|YEid; Opa)




image16.png
r(x) =ary + (1 —a)re, a € [0, 1]




image17.png
HMZ

aEM — 9(x
I )
E +
(1 a)logP (
I
n|Y
)]

BR(O).
(1)




image18.png
O = {OaB,OBa}. R(O)




image19.png




image20.png
5|[©]7 for R(©), so VR(O) = €




image21.png
J(x:9aB) = [0(WaB *X + bag)|>0.5

2
9(y;OBa) = Wpa *y + bpa @




image22.png
Oap = {Wap,bap}, Opa = {Wpa,bpa}




image23.png
P7(-|x;0ap) = 0(Wap * x + bap) 3)




image24.png
Pr(xly: ©m) = ——— exp { 3 be—a)]" B lx-g(v)]}
(2m)2 (det X2)2 o





image25.png
Pf(y|x; ©an)




image26.png




image27.png
log PY(x|y: Opa)




image28.png




image29.png
Vous P ([x;0a5) =P/ (-[x;Oap) - (1 — P/(-]x:Oap))
N 8(WAB * X 4 bAB)
0O B

(5)




image30.png
A

Opa 10
g (
| Y BA)
8 (“)
) BA)
BA

0
9(y:OBa)

= E: X y
g ‘7
BA

(6)




image31.png
dlog PY(x|y;Opa) dg(y) 0Jy

Ve, log P/(x|y;Opa) = d9(y) Jy 00OanB

OP!(|x: Oan)

= Wpy * 27 (x — g(y; Opa)) - 90an

(7)




image32.png
DS




image33.png
{(Xm7ym7Em) %:I(M S N)




image34.png




image35.png
max y*7(X;0aB,0Ba)—(1—7)*Lo, 5 (X, y) —SR(O). (8)

©OAB.©OBA




image36.png




image37.png
v € [0,1]




image38.png




image39.png




image40.png
Lo, (X,y) = —[YT log P/ (-|x; ©ap)

(=3 log = P (x:Oan))]




image41.png
VelssLoas (%,y) = —[y - (P/(-x;0a8)) ' = (1 —y):
‘8Pf('|X; 9AB)

(1—P/(|x;048))7"] SN

(10)




image42.png
Algorithm 1 Training algorithm for the proposed method
Tnput:
weakly labelled training samples {(x,, ,l)),.,,.
fully labelled training samples {(Xpm, Yo, Em) }2_,
max number of training steps T, learning rate 7, weight
coefficients a, 3,7.
Output: optimized parameters ©An, Opa.
Randomly initialize parameters © 5, Opa.
fort < 1toT do

Sample one sample (x E) from training set.
BEMa (v,
Calculate . as Equation 15.

Caleulate 252 as Equation 5.
Calculate 7‘3‘“5" (i) gng 21EPUxIYR) a5 Equa-
tion 7 and 6 respeciively.

Weakly supervised scenar

7 [ PEMA G wlE) O3,
Yo | 99an

Oan « Oan +

Blog PY(x|y}.a)
- a)T‘ - ﬂBAn] an
log P (x|

Semi-supervised scenario:
if sample (x, E) is annotated with AU label y then

Caleulate Z2542%Y) 45 Equation 10,

Sl 4 (1—

O Onn 4 L 7[ OEMa (%,lE) 3y,

v Oyhea | BBan
9log P9 (xlyfuia) 0La,y(xy)
] -y Pga et ’5"“1]

Ons  Boa + L[ - ) DE VR _ g,
else
Update ©ap, Opa as Equation 11
end if

end for





image43.png
1 2 4 5 6 7 9 012 15 17 20 23 24 25 26 43

anger >07 >0.7 026 052 >07 207
disgust 031 >07  >07 >07 026

fear >07 057 207 063 >07 >07 033
happiness 051 >0.7 >07
sadness | 0.6 >07 05 026 >07 067
suprise | 207 >07 066 >07  >07
pain - - 205 - 205 >05 205 >05 - - - - - - - - - 205

1 >0.5 >0.5

2 >0.5 >05 <02 <02 <02

4 >0.5  >05

5 >05  >05

6 <02

7 <02 >05 >0.5

9 <02 >05 >0.5

12 <02 <02

15 <02 >0.5 >05 <02

17 <02 >05 >05 <02

23 >05 <02

24 >05  >05 >05 <02

25 <02 <02 <02 <02





image44.png
Expression

AU combinations

Anger
Fear
Disgust
Happiness
Sadness
Surprise

445, 447, 4+5+7, 17+24,23
1+2+4, 20
9, 10(only)
12, 6+12, 7+12
lorl+4, 15, 6+15, 11+17, 11+15
1+2+5(low), 142426, 1+2+5(low)+26




image45.png
E(hvy; (I)) = - Z UZ]y’L ZCZYZ Za’] K (12)

i=1,j=1




image46.png
¢ = {U,c, aj




image47.png




image48.png
Z = >, nexp(=E(hy;®))




image49.png
log P¢(y Zyzcz—{—Zlog +€a]+21 1iliiy _log Z

(14)

dlog P“(y) o 4
8y = T JZ; UGJ+ZYZ ’L] ] (15)





image50.png
(T, n, ., B}




image51.png
T € {10000, 20000, 50000, 100000}




image52.png
T € {100000, 150000, 200000, 300000}




image53.png
n € {0.00001,0.0001,0.001,0.01}




image54.png
a,v € 40.1,0.2,0.3,0.5,0.6,0.7,0.8,0.9}, B €




image55.png
{0.01,0.05,0.1,0.5, 1, 2}




image56.png
AU CK+ MMI UNBC
HTL RBM-P RAN LP-SM Ours | HTL RBM-P RAN LP-SM Ours | HTL RBM-P RAN LP-SM Ours
1 0.61 0.91 0.94 - 0.87 | 0.39 0.69 0.68 - 0.65 - - - - -
2 0.68 0.89 0.90 - 0.89 | 0.60 0.70 0.60 - 0.76 - - - - -
4 0.46 0.70 0.74 - 0.76 | 0.34 0.61 0.61 - 0.66 | 0.27 0.43 0.44 - 0.42
5 0.75 0.82 0.80 - 0.82 | 0.59 0.67 0.71 - 0.74 - - - - -
6 0.51 0.11 0.53 - 0.64 | 0.39 0.28 0.34 - 029 | 0.35 0.46 0.50 056 0.59
7 0.38 0.41 0.45 - 0.63 | 0.32 0.47 0.43 - 0.51 | 0.20 0.42 0.36 052 037
9 0.37 0.90 0.89 - 0.79 | 0.35 0.31 0.41 - 0.46 | 0.19 0.34 0.31 - 0.31
10 - - - - - 0.41 0.29 0.24 - 0.33 | 0.16 0.17 0.07 - 0.21
12 ] 0.44 0.84 0.83 - 0.86 | 0.54 0.59 0.69 - 0.56 - - - 0.46 -
17 | 037 0.86 0.68 - 0.86 | 0.22 0.51 0.51 - 0.40 - - - - -
23 | 027 0.42 0.41 - 0.30 | 0.22 0.25 0.22 - 0.17 - - - - -
24 | 0.24 0.64 0.49 - 0.49 - - - - - - - - - -
25 | 0.69 0.95 0.94 - 0.95 | 0.66 0.75 0.70 - 0.75 - - - - -
26 - - - - - 0.57 0.60 0.64 - 0.59 - - - - -
43 - - - - - - - - - - - 0.30 0.58 - 0.49
Avg. | 0.47 0.71 0.72 073 0.74 | 0.43 0.52 0.52 048 053 | 0.24 0.35 0.38 0.51 0.40





image57.png
F1 score

0.7

0.6

0.5

0.4

0.3

0.2

0.1

RBM-P

RBM-P

0.0

0.1

0.2

0.3

04 05

0.6

0.7

0.8

0.9




image58.png
From CK+ to MMI

From MMI to CK+

AU
SVM HTL RBM-P RAN Ours|SVM HTL RBM-P RAN Ours
1 1065 039 0.68 055 0.67]062 061 084 075 0.78
2 1055 060 062 067 073|066 068 0.79 0.78 0.77
4 1039 034 060 0.64 0.64]058 046 057 0.60 0.63
5 044 059 059 063 0.69(0.74 075 0.73 0.63 0.73
6 1028 039 028 035 031(052 051 059 052 0.69
7 1024 032 055 044 055|044 038 051 045 047
9 1041 035 037 033 032(039 037 055 043 047
12 {042 054 063 054 072|044 044 047 076 0.74
17 {0.18 022 037 045 042|036 037 0.59 0.65 0.70
23 10.07 022 0.09 022 008|022 027 031 020 0.35
25 10.80 066 0.64 076 0.74]0.69 0.69 0.68 0.84 0.78
Avg.| 040 042 049 051 053|055 050 0.63 0.64 0.68




image59.png
From CK+ to UNBC

From UNBC to CK+

AU
SVM HTL RBM-P RAN Ours|SVM HTL RBM-P RAN Ours
4 1019 027 022 026 013|024 046 023 045 041
6 1029 035 041 045 052|034 051 041 041 044
7 1024 020 035 043 031(0.15 038 0.18 040 034
9 1035 019 030 004 037|029 037 034 0.17 026
Avg.| 0.27 025 032 029 033|026 043 034 036 0.36




image60.png
From MMI to UNBC

From UNBC to MMI

AU
SVM HTL RBM-P RAN Ours|SVM HTL RBM-P RAN Ours
4 10.10 027 0.02 0.16 0.11]0.28 034 028 029 0.37
6 026 035 039 029 057024 039 0.04 027 028
7 1010 020 025 001 030(022 032 021 028 0.39
9 1053 0.19 037 045 021|043 035 043 038 027
10 {0.05 0.16 0.19 032 0.08]0.11 041 040 024 0.23
Avg.| 021 023 025 025 025|026 036 027 029 031




image61.png
0.80

070

0.40

030

0.60

050
0.40
0.30
X A
Xe BN \ 035 N )
ML % BN 3 0.20
86Cs b On ML x
S SHIL 0.30 | Q= BGCS N
e REM-P \ e SHTL 9.
e ran 025 | = REmp ~ 010
re e ~
- ours - ours
0.20 0.00
01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

missing rate

missing rate

missing rate




image62.png
FraimiCRH testMMl = s | ose Train:CK+ festUNBC
5 wr

S
"‘--,, < =
054 bl
re ox N
il .A"‘"‘—A\*_ ¢
8 Al 3oz

missing rate

Train:MMI festUNBG_ - st
azs. L o

e
I ou

AR B

i -4

: ot N I 2N
Soss o I -
¢ Tom |2
053 {fm eV e os.
¥
~—.
aso S,
B N O ST e e e
0% Train:UNBC, test:CKT a4 st o Train:UNBC, testMMI - st
= s e
oM - 2
Bon

F1score
F1score

missing rate missing rate




image63.png
CK+ MMI UNBC
MC-LVM [40] 0.77 - 0.63
SVM-HMM [41] . 0.67 -
HRBM [7] 0.71 : 0.59
FFD [42] . 0.68 :
Ours 0.74 0.53 0.40




image64.png
Quantiles of Input Samples

25 23
° °
s S
£ £
] s
12 12}
S =
5 5
2 2
£, =,
5 5
8 8
2 z
52 52
g g
<] <}

B 3

4 4

) 2 Bl o 1 2 3
Standard Normal Quantiles

2 E] o 1 2
Standard Normal Quantiles

25 2 45 1 05 0 05 1 15 2 25
Standard Normal Quantiles




image65.png
| CK+  MMI  UNBC

DRBM 1.39 1.81 3.02
Ours 0.93 0.97 2.70
Ours(0.5) 0.92 0.93 2.70




image66.png
original synthetic original synthetic
e uffj_:;w o, T e
B r P B T Pomess - ! % -

o G / \%}

(a) CK+ (b) UNBC

e





image1.png
facial image x

Feature " oo o AU oredicted AU
extractor et classifier redicted AUy face
—> 0000 0——
- P generator

oot Expression | E
geometry

facial point

first objective term 7y




image2.png
domain knowledge

pseudo AUs

00090

i 0000
sampling RBM

00090

0000

EM,

P(y)





